Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

نویسندگان

  • Dechun Zhou
  • Xuemei Bai
  • Hang Zhou
چکیده

Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

A germanate-tellurite glass (GeO2-TeO₂-K₂O-Nb₂O₅-La₂O₃) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm(3+) around 1.8 μm can r...

متن کامل

Highly efficient mid-infrared 2 μm emission in Ho/Yb-codoped germanate glass

This work reports the mid-infrared emission properties around 2 μm in Ho/Yb codoped germanate glasses. The glass not only possesses good chemical durability and good thermal stability but also has high midinfrared transmittance around 2 μm (90%). In addition, the glass possesses considerably low OH content (20.45 ppm) and large spontaneous transition probability (103.38 s) corresponding to the ...

متن کامل

Role of Yb3+ ions on enhanced ~2.9 μm emission from Ho3+ ions in low phonon oxide glass system

The foremost limitation of an oxide based crystal or glass host to demonstrate mid- infrared emissions is its high phonon energy. It is very difficult to obtain radiative mid-infrared emissions from these hosts which normally relax non-radiatively between closely spaced energy levels of dopant rare earth ions. In this study, an intense mid-infrared emission around 2.9 μm has been perceived from...

متن کامل

Compact broadband amplified spontaneous emission in Tm-doped tungsten tellurite glass double-cladding single-mode fiber

We reported the ~2 μm amplified spontaneous emission (ASE) performance of highly Tm-doped (3.76 × 10 ions/cm) tungsten tellurite single-mode fibers. The double-cladding fiber was pumped by a commercial 792 nm laser diode without any reflectors. Broadband ASE spectra with the bandwidth (FWHM) varying from ~45 nm to ~140 nm were achieved in a fiber length of 34 cm. The maximum output power was ~3...

متن کامل

2 μm emission properties and nonresonant energy transfer of Er3+ and Ho3+ codoped silicate glasses

2.0 μm emission properties of Er3+/Ho3+ codoped silicate glasses were investigated pumped by 980 nm LD. Absorption spectra were determined. Intense mid-infrared emissions near 2 μm are observed. The spectral components of the 2 μm fluorescence band were analyzed and an equivalent model of four-level system was proposed to describe broadband 2 μm emission. Low OH- absorption coefficient (0.23 cm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017